
Solving the Relational Data Access Problem with Data

Access Services

This version of the contribution has been accepted for publication, after peer
review (when applicable) but is not the Version of Record and does not reflect

post-acceptance improvements, or any corrections. The Version of Record is
available online at: http://dx.doi.org/[insert DOI]. Use of this Accepted Vesion

is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-

manuscript-terms.

2

Solving the Relational Data Access Problem with Data

Access Services

Ken Wang [0009-0002-3064-3421]

BackLogic LLC, Chino Hills, CA 91709, USA

Abstract. The object-relational impedance mismatch problem consists of two

sub-issues: language impedance and data structure mismatch. Solution to the

first issue is to abstract away the programming language from SQL; to the sec-

ond issue is to abstract away the object-relational transformation from develop-

er. This paper presents three standardized data access services, query, command

and repository, collectively as a preferable solution to relational data access.

These services are specified declaratively with SQL and JSON. The hard ob-

ject-relational transformation is delegated to service engine. This paper also

presents a reference implementation of the service engine for service execution.

The complexity test proves that this reference service engine is capable of han-

dling highly complex objects up to the 5x5 level on the complexity scale devel-

oped in this research.

Keywords: object, relational, database, data access, persistence

1 Introduction

Relational data access (RDA) is an old but not well-solved problem. ORM (object

relational mapping) is intended to bridge the gap between the object and relational

world, but has drawn as much criticism as praise over the years [1] [2]. Like raw

SQL, it is incapable of gracefully handling even moderately complex objects. As a

result, developers are forced to compromise on their object design, which takes a lot

of flexibility and productivity away from them.

People have hoped that NoSQL database could provide a solution to the problem.

However, as it stands now, relational database (RDBMS) is still the dominating data-

base according to data from DB Engines Ranking [3] and will likely remain so solely

because of the maturity and superiority of relational data model. This situation leaves

us no choice but to find a better solution to relational data access.

In this research, we have reexamined the nature of object-relational impedance

mismatch and realized that this impedance mismatch problem actually consists of two

sub-issues: the language impedance between embedded SQL and the host language,

and the data structure mismatch between the object model and the relational data set.

We believe that the solution to the first issue is to abstract away the host language

from SQL, or to separate SQL from the host language, and that the solution to the

second issue is to abstract away the object-relational transformation from developer

and delegate it to data access framework/library.

3

In this research, we have also reexamined the familiar DAO (data access object)

and repository design patterns and realized that the whole RDA problem actually

comprises only three basic data access patterns: query, command and repository.

These findings lead us to the idea of reducing the generic DAO and repository de-

sign patterns to three standardized data access services (DAS), namely query, com-

mand and repository services. These services will be specified declaratively with

SQL and JSON, rather than being coded with an imperative programming language,

and will be executed with a service engine residing on the data access tier, as opposed

to a framework/library embedded in the data access layer. These DAS are conceptual-

ly simple and thus easy to learn and quick to develop. Most importantly, they dele-

gate the hard object-relational transformation problem to service engine, while

providing developers with the flexibility to design their object model according to

application needs rather than framework constraints.

Due to space limitations, this paper provides only a brief description of the struc-

ture, composition, development process and test results of these DAS. The examples

are available on GitHub [8] for public review.

To prove the concept of DAS, a reference service engine, along with a service

builder tool, is implemented. Example services are developed with the service builder

and tested with the reference service engine.

The success of the DAS concept is to a great extent determined by the capability of

the service engine to handle complex objects. The complexity test shows that the

reference engine is capable of handling objects at level 5 x 5 on the complexity scale

developed in this research for measuring the complexity of an object structure. At this

level, the object is a nested structure with 5 array structures in both the vertical and

horizontal directions. It is unlikely that a real-world application would need data

structures of this complexity, and thus this test virtually assures developers of the total

flexibility in their object design.

2 Data Access Services

2.1 Query Service

Query service is for retrieving data from data source. It takes an input object of query

parameters and returns an object or an array of objects as output.

Fig. 1. Structure of query service

4

Fig.1 illustrates the structure of the example query service getCustomersByCity. Table

1 lists the JSON and SQL files composing the query service. The service.json file is

not a component of the service but contains the meta data of the service.

Table 1. List of query files

File Description

input.json json file for service input

output.json json file for service output

query.sql sql file for service query

input-bindings.json json file for input bindings that map query parameters to input data

fields

output-bindings.json json file for output bindings that map output data fields to query

columns

The input and output define what the query service is for; the SQL query imple-

ments the data access logic of the service. To specify the query service, the user first

• Specifies the input and output for the service with JSON in the input and output

files; then

• Composes the SQL query to retrieve data in the query file; and lastly

• Generates the input and output bindings from the service input, output and query.

The last step is to be assisted by service builder, a development tool for DAS, and be

done with a click of a button. The output, query and output-bindings code for the

getCustomersByCity service are listed below for illustration.

Output:

[{
 "customerNumber": 1,
 "customerName": "Land of Toys Inc.",
 "address": {
 "addr": "NYC",
 "city": "NYC"
 }
}]

Query:

select customerNumber, customerName, address, city
 from customers where city = :city

Output-Bindings:
[
 {"field": "..customerNumber", "column": "customerNumber"},
 {"field": "..customerName", "column": "customerName"},
 {"field": "..address.addr", "column": "address"},
 {"field": "..address.city", "column": "city"}
]

5

The query service provides developer with the flexibility to retrieve any ad hoc da-

ta structure per application needs.

2.2 Command Service

The command service is for writing and changing data in data source. The basic

command service takes an input object of SQL parameters and returns nothing. The

advanced version appends a query to the command. Fig.2 illustrates the structure of

the basic command service cloneProductLine.

Fig. 2. Structure of command service

Table 2 lists the JSON and SQL files composing the command service.

Table 2. List of command files

File Description

input.json json file for service input

sqls.json sql file for service DML statements

input-bindings.json json file for input bindings that map sql parameters to input data

fields

To specify the command service, the user first

• Specifies the input object for the service with JSON in the input file; then

• Composes a sequence of DML statements to be executed for the command service

in the sqls file; and lastly

• Generates the input bindings from the input and SQL statements.

The JSON and SQL code for the cloneProductLine service are not included in this

paper but can be found on GitHub [8], along with many other command examples.

The command service provides developer with the flexibility to perform any ad

hoc data loading and any ad hoc data changes per the application needs.

2.3 Repository Service

Repository service is for CRUD operations of aggregate root object. It includes both

read operations for querying the object and write operations for creating, updating and

deleting the object. Fig.3 illustrates the structure of the repository service Order.

6

Fig. 3. Structure of repository service

Table 3 lists the JSON and SQL files composing the repository service.

Table 3. List of repository files

Component File Description

object object.json json file for service object

read input.json json file for read input

 query.sql sql file for read query

 input-bindings.json json file for input bindings that map query

parameters to input data fields

 output-bindings.json json file for output bindings that map object

data fields to query columns

write tables.json json file for table bindings that map object

structures to tables

 orders.columns.json json file for column bindings that maps object

data fields to table columns.

 orderdetails.columns.json Same as above. One file per table.

The object component defines what the repository service is for; the read component

specifies a query service for the object; the write component comprises a set of table

and column bindings (aka mappings) for dynamic generation of insert, update and

delete statements. To specify the repository service, the user first

• Specifies the object for the service with JSON in the object file; then

• Specifies the query service for the read component (the output of the query service

is the object and needs not to be specified again); and lastly

• Generates the table and column bindings from the object, query and DB meta.

7

The last step is to be assisted by service builder and be done with a click of a button.

The JSON and SQL code for the Order service are not included in this paper but can

be found on GitHub [8], along with many other repository examples.

The read component of the repository service is designed to be a dynamic query,

implying that the WHERE clause of the query will be dynamically modified at execu-

tion, based on the input parameters coming from the service call, to accommodate the

different query needs for the object, such as getOrderById, getOrdersByCustomer,

getOrdersByStartAndEndDates, etc.

The write component of the repository service is to be derived by design from the

read component. The tables to write are derived from the query; the column data are

both derived from the query and retrieved from database meta data; and the table and

column bindings are helped by the existing output bindings. For this purpose, a set of

rules is imposed on the read query. For example, the table join must be in ANSI for-

mat; the tables must be aliased; the columns must be prefixed with table alias; the

alias for reference table (aka read-only table) must start with “_”, so that it can be

excluded from the table bindings, etc. However, most of these rules are also best prac-

tices.

The repository service is for persistence of domain objects. Because of its capabil-

ity of handling complex aggregate root object, it is expected to be a good fit for do-

main-driven design (DDD) that is driving microservices development these days.

3 Reference Engine

Just like SQL is executed by SQL engine, DAS is executed by service engine. The

concept of DAS hinges on the successful implementation of the service engine. Addi-

tionally, the concept of DAS is bundled with a builder tool for automatic generation

of input, output, table and column bindings. Therefore, to prove the concept of DAS,

we have implemented a reference service engine, along with a service builder.

3.1 Service Builder

The service builder is implemented as a VS Code extension [7], so that the SQL and

JSON can be developed in specialized SQL and JSON editors, respectively. The SQL

editor is to be connected to the data source, so that the SQL development can be done

in a database-centric environment.

An important feature of this service builder is its capability of generating input and

output bindings for query and command services and its capability of generating table

and column bindings for repository service. For this purpose, a SQL parser and a

fuzzy data field matcher have been installed with the service builder.

A slew of example query, command and repository services [8] have been devel-

oped with this service builder in a streamlined process, as described in the previous

section.

8

3.2 Service Engine

The service engine is implemented as a library component and embedded in the

service builder [7], so that the service can be tested as it is developed. In this research,

the service engine is tested with the various example query, command and repository

services developed using the service builder, and it has worked as designed for all.

However, the real success of the service engine is measured by its capability of

handling complex objects, which is what distinguishes DAS from other approaches.

Hence, we have developed a complexity scale for measuring object complexity and

carried out a complexity test on the service engine, as discussed in the following sec-

tions.

4 Complexity Scale

The difficulty of object-relational transformation increases with the complexity of the

target object structure. To gauge this difficulty, a five-level complexity scale is devel-

oped in this research for measuring the complexity of the object structure, as de-

scribed in the following.

At level 0 x 0, the object is the same as the relational data set.

At level 1 x 1, the object is different from the relational data set but does not con-

tain any array structure. The object may include nested object structure vertically and

horizontally. Nonetheless, a skilled developer can easily handle this type of objects.

At level 1 x n, the object includes nested array structure only vertically, as illus-

trated below:

{
 "id1": 1,
 "a1": [{
 "id2": 2,
 "a2": [{

 "id3": 3
 ...

 }]
 }]

}

A skilled developer can comfortably handle objects at level 1 x 2. Beyond this level, it

would be a hard stretch and may require the infamous N+1 technique.

 At level n x 1, the object includes nested array structure only horizontally, as

shown in the following:

 {
 "id1": 1,
 "a2": [{"id2": 1}],
 "a3": [{"id3": 1}]

 ...
 }

9

Horizontally nested array structure is more difficult to handle than vertically nested

array. Even a 1 x 2 structure is quite hard to a skilled developer.

At level n x n, the object includes both vertically and horizontally nested array

structures. This is the hardest level to deal with.

This 5-level complexity scale could be used as a standard for measuring the com-

plexity of an object and the capacity of an RDA solution. Note that, at all levels, the

difficulty of object-relational transformation is measured by transforming a relational

data set into an array of the objects.

5 Complexity Test

5.1 Test Service

The capability of service engine to handle complex objects is measured by its capabil-

ity to query complex objects. Therefore, a set of specially designed query services are

used for the test. The test service does not take any input but returns an array of ob-

jects of different complexity per the test level.

For example, the test output for a 3 x 3 test would look like:

[{

 "id11": 1,

 "a2": [{

 "id22": 1,

 "b2": [{

 "id23": 1

 }]

 }],

 "a3": [{

 "id32": 1,

 "b2": [{

 "id33": 1

 }]

 }]

}]

It contains 3 array structures in both the vertical and horizontal directions. To provide

data for the test output, a test query is prepared for the test service to produce a data

set of 5 data fields and 8 rows for the 3 x 3 test, as shown in table 4.

5.2 Test Result

Once executed, the 3 x 3 test service is expected to return a data structure the same as

the test output defined for the test service, but with two records in each of the 5 array

structures. The test result has come out exactly as expected.

10

Table 4. Data records from test query.

Id11 Id22 Id23 Id32 Id33

1 1 1 1 1

1 1 2 1 2

1 2 3 2 3

1 2 4 2 4

2 3 5 3 5

2 3 6 3 6

2 4 7 4 7

2 4 8 4 8

The 3 x 3 test is a scaled down version for illustration. For the real test, we have

tested the service engine with objects at various levels of complexity, including:

• 1 x 5

• 5 x 1, and

• 5 x 5

The results all come out as expected and are saved in GitHub [9] for public access.

Therefore, we may conclude that the reference implementation of service engine is

capable of handling complex objects up to the 5 x 5 level, and that the concept of

DAS is feasible for handling complex objects.

6 Advantages

Table 5 compares DAS with Spring JDBC and JPA, which represent the two main-

stream approaches at the moment: raw SQL and ORM. Compared to JDBC and JPA,

DAS offers some unique advantages:

• DAS is scalable, meaning that as the query and, especially, the object gets com-

plex, the level of effort required do not increase dramatically.

• DAS is platform independent. It works not only with Java but also with other

applications.

• DAS requires only SQL and JSON skills and thus presents an opportunity to

delegate the data access development to a SQL developer, just like the presen-

tation layer is delegated to front-end developers.

• DAS development is highly efficient. The SQL is developed in a database-

centric environment; the data mapping is largely automated; and the developer

needs not to concern about database session and transaction, etc.

• DAS is safe from SQL injection. The SQLs are fully parameterized and, by de-

fault, are never altered through string appending or substitution.

Architecturally, DAS separates the data access layer from the application and

makes data access a backing service to the application. To serverless or microservices

applications, DAS may be deployed to provide not only data access but also connec-

tion polling services.

11

Table 5. Comparison of DAS with JPA and Spring JDBC.

 Spring JDBC JPA DAS

Architecture

Application architecture 3-tier 3-tier 4-tier

object-data model coupling loose tight loose

platform dependency Java Java None

Scalability

with SQL complexity Fully scalable Semi-scalable Fully scalable

with object complexity Not scalable Not scalable Highly scalable

Development

paradigm/environment Java Java SQL

skill requirements Java, SQL Java, QL, SQL SQL, JSON

coding style Imperative Imperative Declarative

mapping automation By convention By convention Fussy matching

Security

SQL injection Up to developer Generally safe Safe

7 Summary

A small set of standardized data access services, namely query, command and reposi-

tory services are presented as a preferable solution for the hard relational data access

problem. Different from all traditional approaches, these services are specified declar-

atively with SQL and JSON, and are capable of handling highly complex object struc-

tures, as the hard object-relational transformation problem is abstracted away from

developer and delegated to service engine. A reference service engine, along with a

service builder tool, is implemented and tested with a slew of example query, com-

mand and repository services. A complexity scale is developed for measuring the

complexity of object structure, as well as the capability of RDA solutions. The refer-

ence service engine is capable of handling objects at level 5x5 on above complexity

scale, potentially covering all realistic application needs.

References

1. Fowler, M.: ORM Hate, https:// www.martinfowler.com/bliki/OrmHate.html, last accessed

2023/11/09.

2. Neward, T.: The Vietnam of Computer Science,

https://www.semanticscholar.org/paper/The-Vietnam-of-Computer-Science-

Neward/331e490c55ee72d6011bbceb323c03f0572a5235 (2006), last accessed 2023/11/09

3. DB-Engines DB-Engines Ranking, https://db-engines.com/en/ranking (November 2023),

last accessed 2023/11/09

http://www.martinfowler.com/bliki/OrmHate.html
https://www.semanticscholar.org/paper/The-Vietnam-of-Computer-Science-Neward/331e490c55ee72d6011bbceb323c03f0572a5235
https://www.semanticscholar.org/paper/The-Vietnam-of-Computer-Science-Neward/331e490c55ee72d6011bbceb323c03f0572a5235
https://db-engines.com/en/ranking

12

4. Bauer, C., King G.: Java Persistence with Hibernate. Manning Publications Co., 209 Bruce

Park Ave. Greenwich, CT 06830 (2007).

5. Ireland, J.: Object-relational impedance mismatch: a framework based approach, PhD the-

sis The Open University (2011).

6. Oracle Data Access Object, https://www.oracle.com/java/technologies/data-access-

object.html, last accessed 2023/11/09

7. GitHub Service Builder, https://github.com/bklogic/ServiceBuilder, last accessed

2023/11/09

8. GitHub Data Access Service Example, https://github.com/bklogic/data-access-service-

example, last accessed 2023/11/09

9. GitHub Complexity Test, https://github.com/bklogic/complexity-test, last accessed

2023/11/13

https://www.oracle.com/java/technologies/data-access-object.html
https://www.oracle.com/java/technologies/data-access-object.html
https://github.com/bklogic/ServiceBuilder
https://github.com/bklogic/data-access-service-example
https://github.com/bklogic/data-access-service-example

